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Abstract

In this thesis, we study the preprocessing phase of the ALT algorithm. ALT is a well
known preprocessing-based speed-up technique for Dijkstra’s algorithm, which allows
fast computations of shortest paths in large scale road networks. The preprocessing
of the ALT algorithm has some degree of freedom, in that it must select a subset of
nodes in the graph, called landmarks, that fulfill a special role; optimally choosing
these landmarks is NP-hard, hence no effective exact solution algorithm exists. In
this thesis, we study the landmark selection process; we propose several solution
methods, including a greedy algorithm as well as a new heuristic. Furthermore, we
propose a new model for the search space of an ALT shortest path computation,
which allows us to reduce the problem of optimally choosing k landmarks to the
maximum coverage problem, for which approximation results are known, and to
formulate the landmark selection problem as an integer linear program.
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Abstract

In dieser Studienarbeit wurde die Vorberechnungsphase des ALT Algorithmus’ un-
tersucht. ALT ist ein bekannter und in der Literatur mehrfach untersuchter Routen-
planungsalgorithmus der auf Dijkstra’s Algorithmus basiert aber durch einen Vor-
berechnungsschritt kürzeste Wege Anfragen wesentlich schneller beantworten kann.
Im Vorbereitungsschritt verbleiben gewisse Freiheitsgrade in der Wahl von speziellen
Punkten, sogenannten Landmarken, zu und von denen die Entfernung zu allen
anderen Knoten vorberechnet wird. Es ist NP hart diesen Freiheitsgrad optimal
zu füllen, das heißt eine optimale Menge an Landmarken auszuwählen, weshalb
dafür bisher Heuristiken verwendet werden. In dieser Arbeit haben wir die Wahl
der Landmarken untersucht und neue Lösungsalgorithmen vorgestellt, darunter ein
Greedy Algorithmus sowie eine neue Heuristik. Des weiteren schlagen wir ein neues
Suchraummodel vor, das es uns ermöglicht das Problem auf ein ’Maximales Abdeck-
ungsproblem’ (maximum coverage problem) zu reduzieren, für das Approximation-
sergebnisse existieren und das es uns ermöglicht das Problem der optimalen Wahl
der Landmarken als Ganzzahliges Lineares Programm zu schreiben.
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1. Introduction

The computation of shortest paths on graphs is a problem with many real-life appli-
cations like route planning in an internet or car navigation system, traffic simulation
or logistic optimization. One prominent example is, that one is interested in the
shortest path between two given endpoints: one departure node s and a destination
node t. This variant of the problem, which is called the single-source single-target
problem, can be solved in polynomial time with the well known Dijkstra’s algorithm
(Dijkstra, 1959), assuming that the graph has non-negative edge weights. If this
condition does not hold but the graph does not contain negative cycles, then the
shortest path problem can be solved with the Bellman-Ford algorithm (Bellman,
1958; Ford and Fulkerson, 1962). Finding a simple shortest path in graphs with
negative cycles is shown to be NP-hard. Indeed, these two algorithms can be used
to compute not only the shortest path between two given endpoints, but all shortest
paths originating from a source node s: this variant of the problem is called single-
source. Although this is a very commonly used variant, there exist other variants
of the shortest path problem, such as the all-pairs shortest paths problem, which
requires the computation of the shortest path between all pairs of nodes in a given
graph. The all-pairs shortest paths problem can be solved with the Floyd-Warshall
algorithm (Cormen et al., 2001).

One interesting practical application of the single-source single-target shortest path
problem is route planning: indeed, road networks can be easily represented as graphs,
and the problem of finding the shortest route between two points can be solved by
computing the shortest path between two nodes on the corresponding graph. In
many cases, one would be interested in computing shortest paths in a matter of few
milliseconds: one typical example is a server scenario which has to deal with several
user shortest paths queries per second, and is therefore required to carry out each
computation in a very short time. However, the graphs which represent real-world
road networks, such as the European or the North American road networks, can have
very large sizes, and the classical shortest paths algorithms introduced above may
require several seconds for each computation. For the practical applications that we
have in mind, this is not acceptable. To deal with this issue, we can employ speed-up
techniques that preprocess the input data, in order to accelerate the answer to single-
source single-target shortest paths queries (Wagner and Willhalm, 2007). This means
that the solution method has two phases: a preprocessing phase, that computes
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2 1. Introduction
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Figure 1.1: triangle inequality

useful information on the input graph and is applied only once, and a query phase,
which computes the actual shortest paths using the output of the preprocessing phase
to accelerate the search. There are many different preprocessing based variants
of Dijkstra’s algorithm, such as ALT (Goldberg and Harrelson, 2004), Arc-Flags
(Gutman, 2004), Contraction Hierarchies (Geisberger et al., 2008), Highway Node
Routing (Holzer et al., 2009; Schultes and Sanders, 2007), SHARC (Bauer and
Delling, 2009) and Reach Based Pruning (Goldberg et al., 2007).

Research in this field is, at least for enhanced problems such as time-dependent
graphs, still very active, with the objective of improving preprocessing time and
space, as well as the performance of the query phase. An overview of several speed-
up techniques and some experimental work can be found in (Delling et al., 2009;
Wagner and Willhalm, 2007).

In this thesis we will take a closer look at the preprocessing phase required by the
ALT algorithm, which has been introduced by (Goldberg and Harrelson, 2004). ALT
stands for A* search, Landmarks and Triangle inequality, as these are the main
ingredients of the algorithm. The A* algorithm is a generalization of Dijkstra’s
algorithm, which uses a function (the potential function π) to estimate distances
between nodes in the graph. A good potential function π can be used to reduce the
search space (i.e. the set of nodes that have to be “explored” before the solution is
found) of the shortest path queries effectively. One way to define a potential function
is through the use of landmarks (Goldberg and Harrelson, 2004), that is, a subset of
the nodes in the graph which fulfill a special role. For these landmarks, the distances
to/from all other nodes in the graph are computed during the preprocessing phase,
and estimations of distances within the graph can then be carried out by means of
the triangle inequality. The triangle inequality states that, for any three nodes u, v, l
in the graph, d(u, v) ≤ d(u, l) + d(l, v), where d(u, v) is the distance between u and
v, i.e. the length of the shortest path between those two nodes. This inequality can
be used to derive bounds: as illustrated in Figure 1.1, the distance from u to v is
smaller than dist(l1, v) − dist(l1, u) as well as dist(u, l2) − dist(v, l2). One question
arises: how do we select landmarks on the input graph?

As it is shown in (Bauer et al., 2010), most of the preprocessing based speed-up
techniques for Dijkstra’s algorithm (such as ALT, Arc-Flags, SHARC, Highway Node
Routing and Contraction Hierarchies), have some degrees of freedom which are NP-
hard to determine optimally, and are therefore heuristically determined in practice.
This also applies for the ALT algorithm, for which it is shown that selecting a
set of k landmarks which minimizes the expected search space for random single-
source single-target queries is NP-hard. Several heuristics for this purpose have
been proposed in the literature, such as: random, farthest and avoid introduced by
Goldberg and Harrelson (Goldberg and Harrelson, 2004), advanced avoid introduced
by Delling et al (Delling et al., 2006), as well as maxCover introduced by Goldberg
and Werneck (Goldberg and Werneck, 2005).
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In this thesis we will study the problem of selecting the set of landmarks in a graph
so that the search space of random single-source single-target shortest path queries
is minimized. We will focus on simple graph classes such as paths and trees, and
give results on the effect that landmarks have on the shortest paths computations.
We will also give an upper bound on the number of landmarks which are needed to
achieve minimal search spaces in trees. We will then analyze the performance of a
greedy algorithms for the problem of selecting k landmarks, and introduce a new
heuristic. We propose an integer linear program (ILP) formulation that models the
problem of selecting the best possible set of landmarks on a given graph. Finally, we
carry out computational experiments to compare the performance of the methods
studied in this thesis with existing algorithms from the literature.
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2. Preliminaries

We denote by

N the set of non-negative integers
R+ the set of positive real numbers, including zero
|A| the cardinality of the set A

A graph is an ordered pair G = (V,E) comprising a set V of vertices and a set E ⊂ V×V
of edges. We also consider a non-negative length function len : E → R+; for the sake of
simplicity, we write len(u, v) := len((u, v)).

Definition and Remark 2.1. For a graph G = (V,E)

1. G is said to be directed if the elements of E are ordered pairs, and is called undirected
if such pairs are unordered.

2. For a directed graph, we say that an edge e = (u, v) leaves node u and enters node
v.

3. Within this thesis, an undirected graph is equivalent to a directed graph such that
for every edge e = (u, v) ∈ E there exists an edge e′ = (v, u) ∈ E.

4. For an undirected graph, the length function is required to be symmetric: len(u, v) =
len(v, u).

Definition 2.2. Given a graph G = (V,E) and two nodes u, v ∈ V

1. A path from u to v (also called a u-v-path) is a sequence (v0, v1, . . . , vp) of vertices such
that u = v0,v = vp, and there exists an edge (vi−1, vi) ∈ E for every i ∈ {1, . . . , p}.

2. A path from u to v is called simple if no vertices are repeated on the path.

3. The distance between two vertices u and v is defined as

dist(u, v) := min
(v0,...,vp) is a path from u to v

p∑
i=1

len(vi−1, vi).

and if no path from u to v exists in G, dist(u, v) :=∞ by convention.

4. Given u, s, t ∈ V, and an s-t-path Q, we define the distance between u and Q as
dist(u,Q) := minv∈Q{dist(s, v)}.

5



6 2. Preliminaries

5. A cycle is a path (v0, v1, . . . , vr) with v0 = vr.

6. If we require the path (v0, v1, . . . , vr−1) to be simple we say (v0, v1, . . . , vr) is a simple
cycle.

Definition and Remark 2.3. For a graph G = (V,E)

1. We say G is connected if for each pair (u, v) ∈ V ×V a path from u to v exists.

2. G is a tree if G is connected and without cycles.

3. In a tree any two vertices are connected by exactly one shortest path.

4. we call G a chain if for V = {v0, . . . , vn} the set of edges is E = {(v0, v1), (v1, v2), . . . , (vn−1, vn)},
intuitively speaking the graph is one path.

Dijkstra’s Algorithm

Given a graph G = (V,E) with non-negative length function len(·, ·) and a source s and
a target t with s, t ∈ V, Dijkstra’s algorithm computes the distances and shortest paths
from the source to the target.

During the run of the algorithm a vertex can have three different states: It is either
unreached, reached or settled. It is unreached while the distance label is set to infinity,
reached as soon as a tentative shortest path from the source to the vertex has been found
and settled once it has been processed by the algorithm (Step 1 and 2). Note that a
shortest path from s to a vertex v has been found if v is settled. If v is reached, a tentative
path from s to v has been found which is not necessarily shortest.

The algorithm initializes a distance label dist(v) = ∞ for every vertex v ∈ V\{s} and
dist(s) to 0. We use a min-based priority queue Q to manage the reached vertices priorized
by the distance label. Then, Step 1 and Step 2 are executed until the priority queue Q is
empty which is equally to that every reachable vertex has been settled.

Step 1. Select the reached vertex v with smallest distance label dist(v). If there is more
than one with the same distance label there is some freedom left in how to break ties. The
most common way is to compare the vertex’s ID and select the vertex with the smallest
ID.
Step 2. For every edge from v to a vertex u, update the distance label dist(u) if dist(v) +
len(v, u) is smaller than the current distance label dist(u) to dist(u) = dist(v) + len(v, u).
If the distance label is updated, the algorithm found a new tentative shortest path from s
to the vertex u. Hence we update parent(u): parent(u) = v and add u to priority queue
Q if it has not yet been added, i.e. if u has been unreached so far. Finally the state of the
vertex v is changed to settled.

For every vertex v such that its state is settled, the distance from s to v is dist(s, v) =
dist(v). If a vertex’s distance label is still set to infinity after the algorithm ended this
vertex can not be reached from s. The shortest path from s to a settled vertex v is encoded
in the parent(·) label, which must be followed from v to s to decode the shortest path from
s to v.

Definition 2.4. In a graph G = (V,E) with positive length function len(·, ·) we call the
set of vertices which are settled during the run of Dijkstra’s algorithm for an s-t-query the
Dijkstra search space of this s-t-query and denote it by VDij(s, t).

A* search

6
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Algorithm 2.1 Dijkstra(G, s, t)

Require: graph G = (V,E) and Vertices s, tV
Ensure: dist(s, v) = dist(v)∀v ∈ V
1: for all v ∈ V do
2: parent(v)← ⊥
3: state(v) ← unreached
4: dist(v)←∞
5: dist(s)← 0
6: state(s) ← reached
7: while vertex v with state(v) = reached exists and state(t) 6= reached do
8: Select v ∈ V with state(v) = reached and minimal dist(v)
9: for all u ∈ V with (v, u) ∈ E do

10: if dist(v) + len(v, u) < dist(u) then
11: dist(u)← dist(v) + len(v, u)
12: parent(u)← v
13: state(u) ← reached
14: state(v) ← settled

For a given graph G = (V,E) with non-negative length function len(·, ·), a source s ∈ V,
a target t ∈ V and a so called potential function πt : V → R+, A*-search computes the
distance from s to t. A* is a generalization of Dijkstra’s algorithm, which uses a potential
function πt in addition to the distance function to select the node which should be visited
next. The potential function πt(v) is usually a lower bound for the distance from any
vertex v to the target t.

The potential function πt has to be feasible: dist(u, v)− πt(u) + πt(v) ≥ 0 for all vertices
u, v ∈ V. This implies that the resulting new edge ”lengths” len(u, v) := len(u, v)−πt(u)+
πt(v) are still positive, which is necessary for Dijkstra’s algorithm as well as A* search to
work correctly. With these new edge lengths Dijkstra is equal to A* search, which is proved
in section 3.1.

A* works exactly as Dijkstra, except that the algorithm stops once the target is settled
and that in Step 1 the reached vertex which has minimal costs ĉost(v) := dist(v) + πt(v)
is selected. In general, we write cost(v) := dist(s, v) + πt(v) which is equal to ĉost(v) for
all settled nodes v after the execution of A* search with source s.

ALT algorithm

The ALT algorithm is a variant of A* search, whose main idea is to use landmarks and
triangle inequality to compute a feasible potential function. Given a graph G = (V,E)
with non-negative length function len(·, ·), ALT first selects a set L ⊂ V of k landmarks
and precomputes the distance to and from these landmarks for every vertex in V during
a preprocessing step.

With the triangle inequality |x+y| ≤ |x|+|y| we can derive the two inequalities dist(u, v) ≥
dist(l, v)−dist(l, u) and dist(u, v) ≥ dist(u, l)−dist(v, l) for any u, v, l ∈ V. Note that the
right hand sides only involve distances to and from a landmark which we assumed to be
available thanks to the preprocessing. With the convention ∞−∞ := 0, we can therefore
define

πl+t (v) := dist(v, l)− dist(t, l) (2.1)

πl−t (v) := dist(l, t)− dist(l, v) (2.2)

7



8 2. Preliminaries

Algorithm 2.2 A*(G, s, t, πt)

Require: graph G = (V,E), Vertices s and t
Ensure: parent(t) encodes the shortest path from s to t
1: for all v ∈ V do
2: parent(v)← ⊥
3: state(v) ← unreached
4: dist(v)←∞
5: dist(s)← 0
6: state(s) ← reached
7: while vertex v with state(v) = reached exists and state(t) 6= reached do
8: Select v ∈ V with state(v) = reached and minimal ĉost(v) = dist(v) + πt(v)
9: for all u ∈ V with (v, u) ∈ E do

10: if dist(v) + len(v, u) + πt(u) < dist(u) + πt(u) then
11: parent(u)← v
12: dist(u)← dist(v) + len(v, u)
13: state(u) ← reached
14: state(v) ← settled

as feasible potential functions. To get the tightest bounds we use the maximum of these
potential functions for all landmarks and define

πLt (v) := max
l∈L
{πl+t (v), πl−t (v)} (2.3)

as the potential function ALT uses for the A* search algorithm.

Definition 2.5. In a graph G = (V,E) with positive length function len(·, ·) we call the
set of vertices which are settled during the run of ALT for an s-t-query the ALT search
space of this s-t-query. Since the search space of an s-t-query of ALT depends on the set
of landmarks, we denote the search space in the ALT algorithm by VL(s, t).

Note that we did not specify how to break ties when extracting nodes from the prioriry
queue Q, i.e. the case where multiple nodes attain the minimum on line 8 of Algorithm
2.3. This can have an impact on the search space: see Section 3.1.

8
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Algorithm 2.3 ALT(G, s, t)

Require: graph G = (V,E), Vertices s and t
Ensure: parent(t) encodes the shortest path from s to t
1: L = generate Landmarks(G, k) {select set of k landmark}
2: for all v ∈ V do
3: parent(v)← ⊥
4: state(v) ← unreached
5: dist(s, v)←∞
6: dist(s, s)← 0
7: state(s) ← reached
8: while vertex v with state(v) = reached exists and state(t) 6= reached do
9: Select v ∈ V with state(v) = reached and minimal cost(v) = dist(s, v) + πLt (v)

10: for all u ∈ V with (v, u) ∈ E do
11: if dist(s, v) + len(v, u) + πLt (u) < dist(s, u) + πLt (u) then
12: parent(u)← v
13: dist(s, u)← dist(s, v) + len(v, u)
14: state(u) ← reached
15: state(v) ← settled

9





3. Landmarks

The selection of good landmarks is a crucial point for the performance of the ALT algo-
rithm. Since good landmarks yield a tight lower bound on the distance from any vertex
to the target, with better landmarks usually fewer vertices must be settled by the ALT
algorithm. Therefore, the search space of these s-t-queries can be reduced.

In order to compare different sets of landmarks, we need a measure of quality. We decided
to use the sum of the sizes of the search spaces over all s-t-queries as a measure of quality
for a given set of landmarks L: ∑

s,t∈V
VL(s, t) (3.1)

Minimizing this quantity is equivalent to minimizing the average size of the search space
for a random s-t-query. This results in the following minimization problem. Solving this
problem and therefore minimizing the average size of the search space for a random s-t-
query will be our objective in this thesis.

Definition 3.1 (MinALT). Given a graph G = (V,E) and an integer k, the problem
MinALT is the problem of selecting k landmarks so that the resulting overall ALT search
space is minimal, i.e.to select a set L ⊂ V so that

∑
s,t∈V VL(s, t) is minimal.

3.1 Search space model

In order to measure the search space, we need a model we can compute without having to
run the algorithm itself. Therefore, in literature, a search space model was first described
by (Bauer et al., 2010). It is motivated by the proof of Theorem 4.1 in (Goldberg and
Harrelson, 2004).

Theorem (Goldberg 4.1 [incorrect]). Let πt and π′t be two feasible potential function such
that πt(t) = π′t(t) = 0 and for any vertex π′t(v) ≥ πt(v) (i.e. π′t dominates πt). Then
the set of vertices scanned by A* search search using π′t is a subset of the set of vertices
scanned by A* search search using πt.

This is not true, since for example let G = (V,E) be a undirected graph with V =
{0, 1, 2, 3, 4, 5} and E = {(0, 2), (0, 3), (1, 3), (1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)} with edge
lengths 1 except for the edges (2, 4), (2, 5) and (3, 5) which have edge lengths 2. For sim-
plicity every undirected edge is given only once. The graph is illustrated in Figure 3.1.

11
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Figure 3.1: A counterexample to Theorem 4.1 in (Goldberg and Harrelson, 2004). On the
left the graph in which the counterexample can be constructed is shown. All edge lengths
are 1 if not stated otherwise. In the graph in the middle the ALT search space of the
0-1-query using the landmark 4 is illustrated. On the right the same search space is shown

using the landmarks {4, 5}.

For a query from source vertex s = 0 to sink vertex t = 1, we will first examine the search
space for the potential πLt induced by the landmark L = {4}.

In the first step of the ALT algorithm, the to the vertex 0 adjacent vertices 2 and 3 are
reached. ˆcost(2) = dist(2)+πLt (2) = 1+1 = 2 whereas ˆcost(3) = dist(3)+πLt (3) = 1+0 = 1,
hence 3 is settled next. Then, the target 1 is reached with ˆcost(1) = dist(1) + πLt (1) =
2 + 0 = 2. There is a tie between vertices 1 and 2, but vertex 1 is settled since 1 < 2. The
search space is therefore {0, 3, 1}.

Using the potential πL
′

t induced by the landmarks L′ = {4, 5} in the first step of the ALT
algorithm the costs for vertex 2 are the same but for vertex 3 they change to ˆcost(3) =
dist(0, 3) + πL

′
t (3) = 1 + 1 = 2. Since the costs are the same the tie is broken by settling

the one with the smaller ID. Hence 2 is settled first, then 3 will get settled and afterwards
the target vertex 1. The resulting search space is {0, 2, 3, 1}.

One can easily check that the potential πL
′

t dominates πLt since the maximum over the
potentials induced by the landmarks is taken as described in Chapter 2.

The search space deduced from the way Goldberg breaks ties, would be

ṼL(s, t) = {v ∈ V|dist(s, v) + πLt (v) < dist(s, t) or

dist(s, v) + πLt (v) = dist(s, t) and v ≤ t}
(3.2)

for a s-t-query in a graph G = (V,E) with a set of landmarks L.

In contrast to ṼL(s, t), the search space model we will work with is the worst case search
space model, which can be expressed as

VL(s, t) = {v ∈ V|dist(s, v) + πLt (v) ≤ dist(s, t)} (3.3)

If it is not clear which graph G is meant, we will write VL,G(s, t).

In the following theorem we show, that using the worst case search space model is reason-
able.

Theorem 1. Let G = (V,E) be a graph, L a set of landmarks and the length function be
strictly positive: len(u, v) > 0 for any u, v ∈ V.
Assuming ALT breaks ties based on the labeling of vertices, then there is a labeling of G
such that the ALT search space VL(s, t) equals VL(s, t).

12



3.1. Search space model 13

To show the theorem we first show that executing the ALT algorithm is equivalent to
executing Dijkstra’s algorithm with altered length function. Then, we show that the
theorem holds for Dijkstra with altered length function.

Lemma. On a graph G = (V,E) with non-negative length function len(·, ·), executing A*
search with the feasible potential π is equivalent to Dijkstra’s algorithm with altered length
function len(u, v) := len(u, v) + π(v)− π(u).
This means that the nodes are settled in the same order for both algorithms. We assume
that ties are broken in the same way for both algorithms.

Proof. During the initialization both algorithms do the same (state(v)=unreached, dist(v) =
∞ / dist(v) =∞, for v ∈ V and dist(s) = dist(s) = 0).
For both algorithms the loop executes as long as there are unsettled vertices and the target
t is not settled.
In the loop Dijkstra selects the vertex v with smallest distance label dist(v) whereas on
the other hand A* search selects the vertex v with smallest dist(v) + πt(v).
We will prove by induction that both algorithms settle the nodes in the same order
which means that dist(v) and dist(v) + πt(v) are the same up to a constant factor c:
dist(v) = dist(v) + πt(v)− πt(s) with c = −πt(s).

Base case: The first settled vertex is in both algorithms s and dist(s) = 0 = dist(s) +
πt(s)− πt(s).

Let the first r vertices be settled in the same order by both algorithms and dist(v) =
dist(v) + πt(v)− πt(s) for all vertices v.
Induction step: Let v be the (r + 1)th vertex which is settled by Dijkstra’s algorithm.

Then dist(v)
induction

= dist(v) + πt(v)− πt(s) must be minimal and hence dist(v) + πt(v) =
dist(v)+πt(s) is minimal. In case there is a tie in both algorithms the same vertex is chosen,
too. Then the distances are updated for any to v adjacent vertex u if dist(v) + len(v, u) <
dist(u) in both algorithms. A* search updates the distance to dist(u) = dist(v) + len(u, v)
and Dijkstra to dist(u) = dist(v) + len(v, u) = dist(v) + πt(v)− πt(s) + len(v, u) + πt(u)−
πt(v) = dist(v) + len(v, u) + πt(u) − πt(s) = dist(u) + πt(u) − πt(s). And therefore both
algorithms are settling the same r+ 1th vertex and dist(v) = dist(v) + πt(v)− πt(s) after
settling the r + 1th vertex.

Since both algorithms end once the target is settled the lemma is shown.

Proof of Theorem 1. Given a graph G = (V,E) with L, πLt as in the theorem, len(u, v) :=
len(u, v) + πLt (v) − πLt (u) the length function and vertices s, t ∈ V and an node labeling
α : V→ N such that

α(v) 6= α(u) if v 6= u

α(t) > α(v) for all v ∈ V

We have to show that VGα

Dij(s, t) = VL,G(s, t).

”⊆”: Let therefore be s, t, v ∈ V such that v ∈ VGα

Dij(s, t), then:

case dist(s, v) ≤ dist(s, t): v ∈ VL,G(s, t) due to the definition of VL,G(s, t).

case dist(s, v) > dist(s, t): t is settled before v is settled and therefore v 6∈ VGα

Dij(s, t), i.e.
this case is not possible.

”⊇”: Let s, t, v ∈ V such that v ∈ VL,G(s, t), then:

case dist(s, v) + πLt (v) < dist(s, t): Dijkstra settles all vertices with dist(s, v) + πLt (v) −
πLt (s) < dist(s, t)− πLt (s) before t is settled ⇒ v ∈ VGα

Dij(s, t).

13



14 3. Landmarks

case dist(s, v) + πLt (v) = dist(s, t): For a path Q from s to v it holds for all vertices w ∈ Q
that dist(s, w)+πLt (w) ≤ dist(s, t). Hence it is sufficient to show that a path Q from
s to v with vertices in the Dijkstra search space exists such that t 6∈ Q.
We first show that t 6∈ Q: Assume t is on the path Q then dist(s, v) + πLt (v) =

dist(s, t) + dist(t, v) + πLt (v)
dist(t,v)>0

> dist(s, t) and hence v is not in VL,G(s, t).
Now we show that the (shortest) path from s to v (including v) is in the Dijkstra
search space. We prove that by induction over the vertices s = w0, w1, . . . , wr = v
on the path Q.
Base case: s = w0 is in the Dijkstra search space.
Induction step: If dist(s, wi) + πLt (wi) < dist(s, t) the first case applies and hence
wi ∈ VGα

Dij(s, t).

If dist(s, wi) + πLt (wi) = dist(s, t) all vertices wj with j < i are in the Dijkstra
search space and hence the distance label of the vertex wi is dist(wi) = dist(s, wi).
Since dist(s, wi) + πLt (wi) <= dist(s, t) there is a tie and Dijkstra settles wi since
α(wi) < α(t).

Remark 3.2. From the theorem follows, that the search space of the ALT algorithm for
an s-t-query can not generally (i.e. if the vertex labeling is unknown) be bound tighter
than {v ∈ V|dist(s, v) + πLt (v) ≤ dist(s, t)} using a total order function < comparing a
vertex’s ID to the target’s ID to break ties on a graph with strictly positive length function.

Now that we justified our new search space model VL(s, t), we show that the statement
of theorem 4.1 from (Goldberg and Harrelson, 2004) is correct for our search space model.

Definition 3.3. On a graph G = (V,E) with positive length function, a set of landmarks
L and feasible potential πLt we write VπL

t
(s, t) if it is not clear which potential is meant.

Theorem 2. Let πt and π′t be two feasible potential function such that πt(t) = π′t(t) = 0
and for any vertex π′t(v) ≥ πt(v) (i.e. π′t dominates πt). Then the set of vertices in the
search space Vπ′

t
(s, t) settled by ALT using π′t is a subset of the set of vertices in the search

space Vπt(s, t) settled by ALT using πt.

Proof. Suppose that a vertex v is not settled by ALT using the potential Vπt(s, t). It is
sufficient to show that v is not settled by ALT using the potential Vπ′

t
(s, t). Since v is not

settled, it must be that dist(s, v) + πt(v) > dist(s, t). Since π′t dominates πt it holds that
dist(s, v) + π′t(v) ≥ dist(s, v) + πt(v) > dist(s, t) and hence v is not settled by ALT using
the potential π′t(v).

3.2 Effect of landmarks on chains

In this section, we show the effect landmarks have on ALT queries on chain graphs.

Definition 3.4. The search space of a graph is optimal if the overall search space∑
s,t∈V VL(s, t) is minimal, i.e. it can not be improved any further.

Theorem 3. Using only one landmark, a graph G consisting of only one chain of vertices
(v0, v1, . . . , vn), n ≥ 3 with strictly positive length function len, has optimal search space,
if and only if v0 or vn is a landmark

Proof. ”→”: Let G be a graph as in Theorem 3.

14



3.2. Effect of landmarks on chains 15

Assume that the landmark is L = {vj}, j 6= 0, j 6= n. Consider the query with source
vj and the target be the to vj adjacent vertex to which the connecting edge has a higher
length. W.l.o.g this be vj+1. Then the costs of vj−1 and vj+1 are

cost(vj−1) = dist(vj , vj−1) + πLvj+1(vj−1)

= dist(vj , vj−1) + max{dist(vj−1, vj)− dist(vj+1, vj),dist(vj+1, vj)− dist(vj−1, vj)}
= dist(vj , vj−1) + dist(vj+1, vj)− dist(vj−1, vj)

= dist(vj+1, vj)

and

cost(vj+1) = dist(vj , vj+1) + πLvj+1(vj+1)

= dist(vj , vj+1) + max{dist(vj+1, vj)− dist(vj+1, vj),dist(vj+1, vj)− dist(vj+1, vj)}
= dist(vj , vj+1)

and therefore both are in VL(s, t) and the query is not optimal.

”←”:

Let G be such a graph and w.l.o.g. v0 be the landmark (otherwise relabel the chain). We
show that all s-t-queries have a minimal search space.

Let therefore s, t ∈ V be two vertices such that the search space of the s-t query is not
minimal without using landmarks, i.e. VDij(s, t) 6= (s = u0, u1, . . . , ur = t). It is shown
in → that such a query exists (e.g. from the source v1 to its adjacent vertex with higher
costs).

We know that without using landmarks at least the one vertex adjacent to the source which
is not on the s-t-path must be settled (otherwise the query would be optimal, since behind
the target no vertex is in the search space due to the strictly positive length function).
Let the source be s = vi and the target t = vl then either vi+1 or vi−1 is in the Dijkstra
search space but not on the s-t-path. In the first case l < i and in the latter l > i. In the
first case the costs for vi+1 are

cost(vi+1) = dist(vi, vi+1) + πt(vi+1)

= dist(vi, vi+1) + max{dist(vi+1, v0)− dist(t, v0), dist(v0, t)− dist(v0, vi+1)}
= dist(vi, vi+1) + dist(vi+1, v0)− dist(t, v0)

= dist(vi, vi+1) + dist(vi+1, t)

= dist(vi, t) + 2 dist(vi, vi+1)

= dist(s, t) + 2 dist(vi, vi+1)

and in the latter case the costs for vi−1 are

cost(vi−1) = dist(vi, vi−1) + πt(vi−1)

= dist(vi, vi−1) + max{dist(vi−1, v0)− dist(t, v0), dist(v0, t)− dist(v0, vi−1)}
= dist(vi, vi−1) + dist(v0, t)− dist(v0, vi−1)}
= dist(vi, vi−1) + dist(vi−1, t)

= dist(vi, t) + 2 dist(vi, vi−1)

= dist(s, t) + 2 dist(vi, vi−1)

and hence in both cases the vertex is not in the search space since the costs are higher
then those of t.

cost(t) = dist(s, t) + πt(t)

= dist(s, t) + max{dist(t, v0)− dist(t, v0),dist(v0, t)− dist(v0, t)}
= dist(s, t)

15



16 3. Landmarks

3.3 Effect of landmarks on trees

In this section we discuss the effect of landmarks on trees. We first describe the effect
the potentials πl+t (v) and πl−t (v) of one landmark l have on shortest path search spaces.
Afterwards we show, which s-t-queries have optimal search spaces in trees and finally give
some insight of how vertices on paths between landmarks can be seen.

3.3.1 Potential πl+t (v) in undirected trees

For undirected trees, we show in this subsection that the search space includes only vertices
with distance less than dist(t, s-l-path) from the core of an s-t-query away for the landmark
l ∈ L with minimal distance dist(t, s-l-path).

Definition 3.5. The core of an s-t-query with respect to a landmark l is the intersection
of the s-t-path and the s-l-path for a landmark l ∈ L. We write Cls,t := {v ∈ V|v ∈
s-t-path and v ∈ s-l-path} for the core of an s-t-query with landmark l.

Note that the core of an s-t-query with landmark l is a path itself and dist(v, Cls,t) =

min{dist(v, u)|u ∈ Cls,t} is the distance from v to the closest vertex in the core.

Theorem 4. Let G = (V,E) be a undirected graph and s, t ∈ V and l be the landmark
with minimal distance dist(t, Cls,t). Using only the potential πl+t the search space of an
s-t-query includes all vertices in the core of the s-t-query with respect to l and all vertices
v such that dist(v, Cls,t) ≤ dist(t, Cls,t), i.e. their distance to the core Cls,t is less or equal to

the distance from t to the core Cls,t.

Proof. Let s, t ∈ V and l be the landmark with minimal distance dist(t, Cls,t). It holds that

VL(s, t) = {v ∈ V| dist(s, v) + πl+t ≤ dist(s, t)} (3.4)

Hence we have to show that

dist(s, v) + πl+t ≤ dist(s, t)⇔ dist(v, Cls,t) ≤ dist(t, Cls,t) (3.5)

to prove that VL(s, t) = {v ∈ V|dist(v, Cls,t) ≤ dist(t, Cls,t)}.

”⇒”: Let v ∈ VL(s, t) then it holds that

dist(s, v) + πl+t (v) ≤dist(s, t)

πl+t ≥0⇒ dist(s, v) + dist(v, l)− dist(t, l) ≤dist(s, t)

(∗)⇒ dist(s, v) + dist(v, l)− dist(t, Cls,t)− dist(Cls,t, l) ≤dist(s, t)

⇒ dist(s, v) + dist(v, l)− dist(Cls,t, l)− dist(s, t) ≤dist(t, Cls,t)

where (*) follows since on the path from t to l is only one vertex c with c ∈ Cls,t. Let Q
denote the s-l path then we can distinguish the following two cases:

case dist(v, Cls,t) = dist(v,Q): Then let ĉ be the last vertex in the intersection of the s-v-

path and the s-l-path Q. In this case ĉ is in the core Cls,t and it holds that

dist(s, v) + dist(v, l) = dist(s, l) + 2 dist(v, Cls,t) (3.6)

16



3.3. Effect of landmarks on trees 17

We can follow

dist(s, v) + dist(v, l)− dist(Cls,t, l)− dist(s, t) ≤ dist(t, Cls,t)
eq 3.6⇒ dist(s, l) + 2 dist(v, Cls,t)− dist(Cls,t, l)− dist(s, t) ≤ dist(t, Cls,t)

and by separating dist(v, Cls,t) on the left side

dist(v, Cls,t) ≤
dist(t, Cls,t) + dist(Cls,t, l) + dist(s, t)− dist(s, l)

2

⇒ dist(v, Cls,t) ≤
dist(t, c) + dist(c, l) + dist(s, c) + dist(c, t)− dist(s, c)− dist(c, l)

2

⇒ dist(v, Cls,t) ≤ 2 dist(t, c)

2

⇒ dist(v, Cls,t) ≤ dist(t, Cls,t))

⇒ v ∈ {v ∈ V| dist(Cls,t, v) ≤ dist(Cls,t, t)}.

case dist(v, Cls,t) > dist(v,Q): Let ĉ again be the last vertex in the intersection of the s−v-
path and the s-l-path Q and {s = v0, v1, . . . , vi = c, . . . , vr = t} be the path Q from
s to l. Let vj = ĉ then j > i for this case since otherwise dist(v, Cls,t) = dist(v,Q).
Hence c must be on the path from s to v and it must hold that

dist(s, v) ≤ dist(s, t)

⇒ dist(s, c) + dist(c, v) ≤ dist(s, c) + dist(c, t)

⇒ dist(c, v) ≤ dist(c, t)

⇒ dist(Cls,t, v) ≤ dist(Cls,t, t)

⇒ v ∈ {v ∈ V| dist(Cls,t, v) ≤ dist(Cls,t, t)}.

”⇐”: Let v be in {v ∈ V|dist(Cls,t, v) ≤ dist(Cls,t, t)} and let additionally Q denote the s-l
path then obviously

dist(Cls,t, v) ≤ dist(Cls,t, t) (3.7)

and we can estimate that

dist(s, v) + dist(v, l) = dist(s, l) + 2 dist(v,Q) ≤ dist(s, l) + 2 dist(v, Cls,t) (3.8)

By starting with the a true fact, we follow that dist(s, v) + πl+t (v) ≤ dist(s, t)

dist(t, Cls,t) ≥ dist(t, Cls,t)
⇒ dist(t, Cls,t) + dist(l, Cls,t)− dist(l, Cls,t) + dist(s, c)− dist(s, c) ≥ dist(t, Cls,t)
⇒ dist(l, Cls,t) + dist(s, c) + dist(t, Cls,t)− dist(s, c)− dist(l, Cls,t) ≥ dist(t, Cls,t)
⇒ dist(l, Cls,t) + dist(s, t)− dist(s, l) ≥ dist(t, Cls,t)
⇒ dist(s, l)− dist(l, Cls,t)− dist(s, t) ≤ −dist(t, Cls,t)
eq 3.8⇒ dist(s, v) + dist(v, l)− 2 dist(v, Cls,t)− dist(l, Cls,t)− dist(s, t) ≤ −dist(t, Cls,t)
⇒ dist(s, v) + dist(v, l)− dist(l, Cls,t)− dist(s, t) ≤ 2 dist(v, Cls,t)− dist(t, Cls,t)
eq 3.7⇒ dist(s, v) + dist(v, l)− dist(l, Cls,t)− dist(s, t) ≤ dist(t, Cls,t)
⇒ dist(s, v) + dist(v, l)− dist(l, Cls,t)− dist(t, Cls,t) ≤ dist(s, t)

⇒ dist(s, v) + dist(v, l)− dist(l, t) ≤ dist(s, t)

17



18 3. Landmarks

If dist(v, l) − dist(l, t) ≥ 0 we can easily follow that dist(s, v) + dist(v, l) − dist(l, t) =
dist(s, v) + πl+t (v) ≤ dist(s, t) and showed that v ∈ VL(s, t). Otherwise dist(v, l) −
dist(l, t) < 0 and therefore dist(s, v) > dist(s, t). We show that this can not be by distin-
guishing the following two cases:

case c ∈ s-v-path: dist(s, c) + dist(c, v) = dist(s, v) > dist(s, t) = dist(s, c) + dist(c, t) ⇒
dist(c, v) > dist(c, t) ⇒ dist(Cls,t, v) > dist(Cls,t, t). Contradiction since dist(Cls,t, v) ≤
dist(Cls,t, t).

case c 6∈ s-v-path: dist(s, ĉ)︸ ︷︷ ︸
≤dist(s,c)

+ dist(ĉ, v)︸ ︷︷ ︸
≤dist(c,t)

= dist(s, v) > dist(s, t) = dist(s, c) + dist(c, t)

with ĉ being the last vertex on the intersection of the s-v-path and the s-l-path.
Contradiction since dist(s, ĉ) + dist(ĉ, v) ≤ dist(s, t).

And hence v ∈ VL(s, t).

3.3.2 Potential πl−t (v) in undirected trees

In this section we examine the influence of πl−t (v) = dist(l, t) − dist(l, v) on undirected
trees. We know, that vertices v for which dist(s, v) + π(v) > dist(s, t) are not settled. We
show now, that when the potential πl−t (v) is used vertices which are closer to the landmark
than necessary are not settled, i.e. a vertex v which is on a s-l-path for l ∈ L but not in
the core Cls,t of the s-t-query is not settled.

Theorem 5. Given a tree G = (V,E) with strictly positive length function and a set L
of landmarks. In an s-t-query no vertex closer to the landmark than necessary are in the
search space VL(s, t), i.e. if a vertex v is on a path from s to a landmark l and not on the
path from s to t it is not settled.

Proof. Let c be the vertex connecting the s-t-path with the landmark l, then cost(c) =
dist(s, c) + πl−t (c) = dist(s, c) + dist(l, t) − dist(l, c) = dist(s, c) + dist(c, t) = dist(s, t) =
cost(t).

Let now v be a vertex on a path from s to a landmark l and not on the path from s to t,
then cost(v) = dist(s, v)+πl−t (v) = dist(s, v)+dist(l, t)−dist(l, v) = dist(s, c)+dist(c, v)+
dist(l, c) + dist(c, t)− dist(l, v) = dist(s, t) + dist(l, c) + dist(c, v)− dist(l, v) > dist(s, t) =
cost(t).

Hence a vertex which is closer to the landmark than necessary will not be settled.

3.3.3 Undirected trees with combined potential πL
t ()

In Section 3.3.1 we showed for undirected trees that vertices v with dist(v, Cls,t) > dist(t, Cls,t)
(with l ∈ L so that dist(t, Cls,t) is minimal) are not settled for the s-t-query using the po-

tential πl+t . In Section 3.3.2 we showed for undirected trees that vertices v on the path
from s to a landmark l but not on the path from s to t are not settled.

By combining both potentials πl+t and πl−t for all landmarks l ∈ L we obtain the potential
πLt which is used by the ALT algorithm. The maximum over the potentials is taken, both
effects are combined and we can infer that the ALT algorithm is not settling vertices v
such that they are more than dist(t, Cls,t) away from the core Cls,t of an s-t-query (with

l ∈ L such that dist(t, Cls,t) is minimal) as well as it is not settling vertices which are closer
to a landmark than necessary.
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Figure 3.2: Illustration of the search space of the query from 8 to 6 with the landmark 9.
On the left using only the potential πl+t and on the right using only the potential πl−t .

3.3.4 Optimal search spaces in trees

Definition 3.6. For an s-t-query on a graph G = (V,E) we say that this query has an
optimal search space if the search space of the ALT algorithm is equivalent to the path
from s to t.

In this section we give all cases so that the search space of an s-t-query is optimal and
we show, that the ALT query is optimal only in these cases. We can derive an algorithm
to compute an upper bound on how many landmarks are needed to have optimal search
spaces from the following Theorem 6.

For Theorem 6 we limit the tree to uniform edge lengths of length 1 for simplicity. For
general edge lengths the cases 2 and 3 need to be modified and the distance from the target
to the core of an s-t-query must be considered.

Theorem 6. On a tree with uniform edge lengths 1 and the landmark l as root, an s-t-
query is optimal if and only if:

1. t is one of the vertices on the path from s to the landmark l.

2. The connecting vertex c has a maximum degree of 3, s has degree 1 and all other
vertices on the s-t-path have maximum degree 2, except for t which may have any
degree.

3. The path from s to t has no vertex with degree > 2, except for t which may have any
degree.

Where the connecting vertex c is the first vertex which is in the intersection of the path
from t to l and the path from s to l.

Proof. ”→ ” : Let q be the path from s to the landmark l.

1. t is one of the vertices on the path from s to the landmark l.

Since dist(t, q) = 0 follows with Theorem 4 that the search space is optimal.

2. The connecting vertex c has a maximum degree of 3, s has degree 1 and all other
vertices on the s-t-path have maximum degree 2, except for t which may have any
degree.
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20 3. Landmarks

The source and all vertices except for the connecting vertex c must not be considered,
since ALT can not reach vertices which are not on the s-t-path from them. From
the fact that the connecting vertex has degree 3, we know that the one adjacent
vertex which is not on the s-t-path is on the path from the connecting vertex to the
landmark. That this vertex will not be settled follows from Theorem 5 which states
that ALT will not search closer to the landmark then necessary

3. The path from s to t has no vertex with degree > 2, except for t which may have
any degree.

In this case ALT has only one possibility to settle vertices not on the s-t-path: To
settle the adjacent vertex u of s which is not on q. Either this vertex u is on the
path from s to the landmark and therefore will not be settled according to Theorem
5 or case 1 applies.

”← ” :

Let s-t be an optimal query and {s = v0, v1, . . . , vr = t} be the vertices on the path from
s to t.

Assume that the s-t-path is not one of the cases 1, 2 or 3. Then, t is not on the path from
s to l and only the following cases remain possible:

(i) t is in a subtree of s

(ii) t and s are connected through vertex c 6= l with degree ≥ 3.

(iii) t and s are connected through vertex c = l with degree ≥ 2.

We will show that all three cases result in a contradiction.

(i) t is in a subtree of s

If {v1, . . . , vr−1} are vertices with degree ≤ 2, then case 3 applies for s-t. Hence at
least one vertex in {v0, . . . , vr−1} has degree > 2. Let v be this vertex, then:

cost(v) = dist(s, v) + |dist(v, l)− dist(t, l)|
∗
= dist(s, v)− dist(v, l) + dist(t, l)

= dist(s, v) + dist(v, t)

= dist(s, t)

(3.9)

where
∗
= holds, since dist(t, l) > dist(v, l). v has at least 3 adjacent vertices, and at

least one vertex u which is not on the s-t-path with

cost(u) = dist(s, u) + | dist(u, l)− dist(t, l)|
= dist(s, v) + 1− | dist(v, l) + 1− dist(t, l)|
= dist(s, v) + 1 +−dist(v, l)− 1 + dist(t, l)

= dist(s, v) + dist(v, t)

= dist(s, t)

(3.10)

Since v is on the s-t-path, v must be settled and therefore u must be settled too,
though it is not on the s-t-path. Hence the search space of the s-t-query is not
optimal.

(ii) t and s are connected through vertex c 6= l with degree ≥ 3.

If v0 has degree 1 and {v1, . . . , vr−1} has only one vertex with degree 3, then case 2
applies. Otherwise s has degree > 1 or {v1, . . . , vr−1} has at least one vertex with
degree > 3 or more than one vertex with degree 3.
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3.3. Effect of landmarks on trees 21

Let Cls,t be the core of the s-t-query, i.e. the intersection of the path from s to l and
the path from s to t. Since t is not in the path q from s to l, ALT searches all vertices
within dist(t, Cls,t) ≥ 1 of the core of the s-t-path. Hence it is sufficient to show that

in each remaining case a vertex u exists with dist(Cls,t, u) ≤ dist(Cls,t, t).

If {v1, . . . , vr−1} has only one connecting vertex with degree 3 but v0 has a degree
> 2, v0 is obviously in the core and has one adjacent vertex u which is not on the
s-t-path. For u it holds that dist(Cls,t, u) = 1 ≤ dist(Cls,t, t) since the target has at
least distance 1 from the core. Contradiction since u is settled from ALT and not on
the s-t-path.

If {v1, . . . , vr−1} has at least one vertex v with degree > 3, then this vertex has at
least one adjacent vertex u which is not on the s-t-path and not on the s-l-path for
which dist(Cls,t, u) = 1 ≤ dist(Cls,t, t). Contradiction since u is settled from ALT and
not on the s-t-path.

If {v1, . . . , vr−1} has more than one vertex with degree 3, then let v be the vertex
which has one adjacent vertex u which is not on the s-t-path and not on the s-l-path
(at least one must exist if more than one vertex with degree ≥ 3 is on the path).
As in the other cases, this vertex u is in the ALT search space though not on the
s-t-path which results in an contradiction.

(iii) t and s are connected through vertex c = l.

If s has degree 1 and the vertices {v1, . . . , vr−1} have degree 2, case 2 applies. Oth-
erwise s has degree > 1 or {v1, . . . , vr−1} has at least one vertex with degree > 2. As
in case (ii) the target t is not in the core Cls,t of the s-t-query and hence it is sufficient

to show that one vertex u exists which is dist(Cls,t, u) ≤ 1 ≤ dist(Cls,t, t)

If s has degree > 1 the to s adjacent vertex u has dist(Cls,t, u) = 1 ≤ dist(Cls,t, t). If
in {v1, . . . , vr−1} at least one vertex has degree > 2, then this vertex has an adjacent
vertex u which is not on the s-t-path with dist(Cls,t, u) = 1 ≤ dist(pCls,t, t). In both
cases u is in the search space and the search space is not optimal. Contradiction.

With this knowledge, we can compute for each vertex, which s-t-paths are optimal if this
vertex is a landmark. By solving a set-covering problem we can then compute an upper
bound on the smallest number of landmarks which are needed to obtain an optimal search
space for all queries. Note that we could also use any known approximation algorithm for
set-covering. This approach does not give the exact bound, since some s-t-paths which are
not optimal for one landmark can be optimal if another landmark (for which alone this
s-t-path is not optimal, too) is added.

3.3.5 On paths between landmarks

In this section we will examine the vertices on paths between two (or more) landmarks
on trees. We will show that adding to the landmark set any vertex which is on a path
between some other landmarks, does not yield a reduction of the search space.

Theorem 7. Let G = (V,E) be a tree and L = {l1, . . . , lk} with k ≥ 2 a set of landmarks.
W.l.o.g. be v on a path between l1 and l2. Then, the set L′ = {l1, . . . , lk, v} will not
improve the overall ALT search space.

Proof. Suppose the set L′ improves the resulting overall ALT search space, then there
must be one s-t-query q which is improved by the landmark v. Then, q must be improved
by one of the ways stated in Section 3.3.1 (i) and 3.3.2 (ii).
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22 3. Landmarks

We will first consider case (i): The search space can only be improved in this case if the
target t is closer to the core of the s-t-query than before. The core of the s-t-query is the
intersection of the s-t-path and one of the paths from the source to the landmarks. Since
v is on a path between two landmarks, the core of the s-t-query can not be enlarged, since
no more vertices than before can be in the intersection. Contradiction.

Consider now (ii): Then, the landmark v must exclude a subtree from the ALT search
space, which is searched by the ALT algorithm if it only uses the set L as landmarks.
From the s-t-path, only vertices which are not in the direction of one of the landmarks in
L may be settled using L, therefore v must exclude at least one vertex from the search
space which is not in direction on another landmark but in direction of v. Since v is on
the path between l1 and l2 this is not possible. If a vertex can be excluded from the search
space using v it has already be excluded by l1 or l2. Contradiction.

Hence the overall search space with the set L′ is the same as with L.

With this proof we get the intuition, that in a tree, landmarks should only be placed in
leaves. This intuition is correct, as the following corollary states.

Corollary. Let G = (V,E) be a tree. Then only leaves or the root if it has only one child,
i.e. vertices with only one adjacent vertex, are in the optimal set of k landmarks for k ≥ 2.

Proof. We assume {l1, . . . , lk} with k ≥ 2 are optimal landmarks and let w.l.o.g l1 have
more than one adjacent vertex. If none of the adjacent vertices is on a path from l1 to
another landmark, then according to Theorem 7 l1 has no more effect since it is on at least
one path between two other landmarks. Hence let u be the adjacent vertex which is not
on the path from l1 to any other landmark. Then, the set {u, l2, . . . , lk} is at least as good
as {l1, . . . , lk}.

In Figure 3.3 we illustrated how one can draw a tree so that one can easily see the distance
from the target t to the source-landmark-path s-l for an s-t-query as well as which s-t-
queries are yet optimal. Originating from the idea behind this illustration that all vertices
between landmarks act as if they were landmarks which has been shown in Theorem 7 we
will introduce a new heuristic for the selection of a set of landmarks in Section 4.4.
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Figure 3.3: In both images we see the same complete binary tree with 15 vertices (in
standard notation, 1 would be the root). On the left (a) the tree is drawn with one
landmark vertex 8 as root and on the right (b) the path from the landmark 8 to the
landmark 12 substitutes a root vertex.
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4. Implementations and algorithms

In this Chapter we will first give another interpretation of the problem to select the land-
marks, which will lead us to a binary linear program formulation. Afterwards we will give
two formulations of a greedy algorithm which holds an approximation guarantee of e−1

e of
the optimal solution. Then we will introduce a new heuristic and finally give a brute force
algorithm to compute a optimal set of k landmarks.

4.1 Selecting landmarks as maximum coverage problem

In contrast to the problem MinALT defined in Chapter 3 we will first define the problem
of maximum coverage (MaxCover) in this section and afterwards show that the problem
MinALT can be reduced to the problem MaxCover.

Definition 4.1 (MaxCover). Given a set of elements {e1, . . . , er}, a collection S =
{S1, . . . , Sn} of sets where Si ⊂ {e1, . . . , er} and an integer k, the problem MaxCover
is to find a subset S ′ ⊂ S with |S ′| ≤ k so that a maximum number of elements ei are
covered:

⋃
Si∈S′ Si is maximal.

Such a set S ′ is called a set with maximum coverage.

The idea of interpreting the problem of selecting k landmarks as a maximum coverage
problem is to compute, for each vertex v and each s-t-query, which vertices the vertex
v would exclude from the Dijkstra search if it would be a landmark. Therefore we start
by computing the Dijkstra search space for each s-t-query and setting up a |V |3 × |V |
matrix with one column for each vertex in every Dijkstra search space and one row for
each vertex in V, interpreted as potential landmark. Each column is assigned to one vertex
v in the Dijkstra search space of an s-t-query and each row to one potential landmark li
as illustrated in Figure 4.1. Each entry of the matrix is initialized with 0.

Then, for each vertex v in the Dijkstra search space of an s-t-query we compute for every
potential landmark li if the ALT algorithm would visit v on the s-t-query when using li
as landmark. If the ALT algorithm would not visit v using li (i.e. li would exclude v from
the search space), we set the entry for row li in the column assigned to the vertex v to
1. For this matrix, selecting k rows so that a maximum number of columns are covered is
equivalent to the maximum coverage problem.

Theorem 8. There is an polynomial reduction from the problem MinALT to MaxCover
with complexity in O(|V |4).
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1 if l3 excludes
v from the search
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query;
0 otherwise

0-1 . . . s-t

v

l 3

Figure 4.1: The matrix for the landmark selection problem interpreted as maximum cov-
erage problem

Proof. Let {e1, . . . , er} = {zv(s, t)|v, s, t ∈ V with dist(s, v) ≤ dist(s, t)} be the set of
elements. Every element zv(s, t) represents one vertex v in an s-t-query and equals one
entry in the matrix. For each potential landmark li (for i = 1, . . . , |V|) we introduce a set
Si ⊂ {zv(s, t)|v, s, t ∈ V with dist(s, v) ≤ dist(s, t)}, such that zv(s, t) ∈ Si if the vertex v
is excluded from the Dijkstra s-t-search-space-model if li is a landmark, each zv(s, t) ∈ Si
equals one 1 in the row i of the matrix.

Claim. A set S ′ ⊂ {S1, S2, . . . , Sn} with |S ′| ≤ k is a optimal solution for the problem
MaxCover if and only if L = {li|Si ∈ S ′} is optimal solution for the problem MinALT.

⇒ : Let S ′ ⊂ {S1, S2, . . . , Sn} with |S ′| ≤ k be a optimal solution for the problem
MaxCover.

Assume that we can find a set L̃ of k landmarks such that the search space is
smaller than with the set L = {li|Si ∈ S ′} induced by the solution of the problem
MaxCover. Then these landmarks must exclude more vertices from the original
Dijkstra search spaces than the landmarks in L do. Therefore the set S̃ ′ = {Si|li ∈ L̃}
covers more elements than S ′. Contradiction to the optimality of the solution S ′.

⇐ : Let L = {l1, . . . , lk} be an optimal solution of the problem MinALT.

Assume that we can find a set S̃ ′ with |S̃ ′| ≤ k such that it covers more elements
ej than the set S ′ = {Si|li ∈ L̃} induced by the solution of the problem MinALT.

This solution S̃ ′ must cover more elements and therefore the set L̃ = {li|Si ∈ S̃ ′}
must also exclude more elements from the Dijkstra search space than the set L.
Contradiction to the optimality of the solution L.

This proves the claim and therefore it remains to show the complexity of the reduction.
For the reduction we need to compute the matrix with |V|4 zv(s, t) elements as entries and
then compute |V| subsets of the set {zv(s, t)|v, s, t ∈ V with dist(s, v) ≤ dist(s, t)}. To
compute the matrix O(|V|4) is needed since for each potential landmark and each vertex
v on a s-t path it must be computed (O(1)) whether it is in the ALT search space or not
for this landmark. Afterwards the sets must be computed out of the rows of the matrix
which again is an O(|V|4) operation. Hence the reduction is in O(|V|4).

Note that we can consider the landmarks independently (as we do it in the proof of the
theorem) for the search space model used in this thesis. This is possible, since it depends
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4.2. Integer linear program 27

solely on the distance and the potential of a vertex whether it is in the search space of
an given s-t-query or not. For other models this is not necessarily possible as we showed
in an example in Section 3.1 that the actual ALT search space increased for this example
even though we added one more landmark.

4.2 Integer linear program

For the problem MinALT of selecting k landmarks so that the search space of the ALT
algorithm is minimal, we can formulate a integer linear program by using the formulation
of the problem as a maximum coverage problem MaxCover. In this chapter we will give
a binary linear program using the search space model used throughout this thesis and
introduced in Section 3.1.

This approach models for each vertex v in any Dijkstra search space, which landmarks
exclude this vertex v from the ALT search space. With the linear program, the set of k
landmarks which excludes most vertices from the ALT search space is computed. Before
we can formulate the binary linear program, we must preprocess the distances between all
vertices in the graph. After that, let V(s, t) := {v ∈ V |dist(s, v) ≤ dist(s, t)} denote the
search space model of an s-t-query using Dijkstra’s algorithm. These search spaces have
to be precomputed for every pair of vertices s and t ∈ V. For s,t ∈ V and v ∈ V(s, t) we
use the variables

zv(s, t) =

{
0 v is not in the ALT search space model of the s-t-query

1 otherwise
(4.1)

and variables L(v) being 1 if v is a landmark and 0 otherwise. Finally we let Lv(s, t)
denote the set of landmarks l such that v is not in the ALT search-space-model of the
s-t-query if landmark l is used. This set can be computed using only the precomputed
distances and the resulting potentials.

With these variables the binary linear program can be formulated as the following maxi-
mization problem.

max
∑

s,t∈V,v∈V(s,t)

zv(s, t) (4.2)

subject to

zv(s, t) ∈ [0, 1] for s, t ∈ V and v ∈ V(s, t) (4.3)

L(v) ∈ {0, 1} for v ∈ V (4.4)

zv(s, t) ≤
∑

l∈Lv(s,t)

L(l) for s, t ∈ V and v ∈ V(s, t) (4.5)

∑
v∈V

L(v) ≤ k (4.6)

In this linear programming formulation, we maximize over zv(s, t) for all vertices v in the
Dijkstra search space for all pairs (s,t). This implies a minimal overall search space of the
ALT-algorithm, since the overall search space of the ALT algorithm is the overall Dijkstra
search space minus

∑
s,t∈V,v∈V(s,t) zv(s, t).

It is sufficient to require, that the variable zv(s, t) must be in the interval from 0 to 1, since
integrality of zv(s, t) follows from the fact that we are maximizing the variables zv(s, t)
and that they only appear in constraint (4.5) which has an integral right hand side if L(l)
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28 4. Implementations and algorithms

is integral. Finally, constraint (4.6) requires the number of landmarks be smaller or equal
to k.

A downside of this formulation is that this linear program is quite memory-consuming. To
represent zv(s, t) for each vertex v in the Dijkstra search space model in every s-t-pair, |V|3
variables are needed. For the set Lv(s, t) we need even O(|V |4) variables since for each
vertex v in the Dijkstra search space model in every s-t-pair a set of landmarks must be
stored. Additionally we need to precompute |V| ∗ |V| distances, which is computationally
in the complexity of O(|V |3) (see Algorithm 4.1). The potential function can be computed
out of the distances when needed since it does only depend on s, t, v and l whether l is in
Lv(s, t) or not.

4.3 The greedy algorithm

In order to describe the greedy algorithm, we will first describe two methods which are
used in the greedy algorithm as well as for the brute force algorithm in Section 4.5.

The Algorithm 4.1 computes all-pair-shortest-paths, i.e. the distances between all pairs of
vertices, and is called Floyd-Warshall algorithm (Cormen et al., 2001). The complexity of
this algorithm is O(|V|3).

Algorithm 4.1 Floyd-Warshall()

Require: A graph G = (V,E) with positive length function len
Ensure: dist(u, v) for all u, v ∈ V
1: for all u ∈ V do
2: for all v ∈ V do
3: if (u, v) ∈ E then
4: dist(u, v)← len(u, v)
5: else
6: dist(u, v)←∞
7: for k = 1 . . . |V| do
8: for all s ∈ V do
9: for all t ∈ V do

10: dist(s, t)← min{dist(s, t), dist(s, k) + dist(k, t)}

To compute the search space for one pair of source and target vertices s and t the Algorithm
4.2 is used. It requires precomputed distances between all pairs of vertices in V and
computes the search space according to the model given in Section 3.1. The algorithm has
a complexity of O((|V| · k) + |V|) = O(|V| · k)

Algorithm 4.2 compute VL(s, t)(L, s, t)

Require: dist(u, v) for all u, v ∈ V, set of landmarks L, s, t ∈ V
Ensure: correct set VL(s, t) of vertices in the search space of the s-t-query
1: for all v ∈ V do
2: πLt (v)← max

l∈L
{dist(v, l)− dist(t, l),dist(l, t)− dist(l, v)}

3: for all v ∈ V do
4: if dist(s, v) + πLt (v) ≤ dist(s, t) then
5: VL(s, t)← VL(s, t) ∪ {v}

The greedy algorithm as it is given in Algorithm 4.3 computes the one vertex v which
minimizes the search space if added to the so far computed set L of landmarks in each
iteration. This vertex v is then added to the set L of landmarks. After k iterations L
consists of k landmarks and is returned as the set of selected landmarks.

28



4.3. The greedy algorithm 29

Algorithm 4.3 Greedy(k)

Require: Integer k
1: L← ∅
2: Floyd-Warshall() {compute all-pair-shortest-paths}
3: for all i = 1, . . . , k do
4: for all l ∈ (V − L) do
5: for all (s, t) ∈ V do
6: compute VL(s, t)(L, s, t) {compute search space}
7: sum[l] =

∑
s,t∈V VL(s, t)

8: bestLM ← argmin{sum[l] | l ∈ (V − L)}
9: L← L ∩ {bestLM}

10: return Set L of k landmarks

We can also formulate this greedy algorithm in a similar way as the integer linear program
in Section 4.2. We no longer add the one vertex v to the set L of landmarks which
minimizes the resulting search space but the one which excludes most vertices from the
search space resulting from the so far computed set of landmarks. Since these formulations
are equivalent both variants always choose the same vertices and hence result in the same
set of landmarks.

Algorithm 4.4 AlternativeGreedy(k)

Require: Integer k
1: L← ∅
2: Floyd-Warshall() {compute all-pair-shortest-paths}
3: for all v ∈ V do
4: sum[v] ← 0
5: min ← ∞
6: minLm ← null
7: for all i = 1, . . . , k do
8: for all s ∈ V do
9: for all t ∈ V do

10: for all v ∈ V do
11: if dist(s, v) ≤ dist(s, t) then
12: for all l ∈ V do
13: potential ← max{dist(v, l)− dist(t, l), dist(l, t)− dist(l, v)}
14: if dist(s, v) + potential ≤ dist(s, t) then
15: sum[l] ← sum[l] + 1
16: for all l ∈ V do
17: if sum[l] < min then
18: min ← sum[l]
19: minLm ← l
20: L← L ∪ {l}
21: return Set L of k landmarks

With the alternative formulation of the greedy algorithm as it is given in Algorithm 4.4
we are able to interpret the algorithm as a greedy algorithm for the maximum coverage
problem. This problem is well known in literature and provides us with an approximation
guarantee of (1 − e

1) = e−1
e of the optimal solution for finding a set which excludes a

maximum number of vertices (Hochbaum, 1997), where e is Euler’s number.

Theorem 9 ((Hochbaum, 1997)). Let weight(GREEDY ) be the weight of the solution of
the greedy algorithm for the problem MaxCover and weight(OPT ) be the weight of the
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optimal solution for the same problem, then:

weight(GREEDY ) ≥ [1− (1− 1

k
)k] · weight(OPT ) > (1− 1

e
) · weight(OPT ) (4.7)

Corollary. Let coverage(GREEDY ) be the number of vertices which can be excluded from
the Dijkstra search space in the greedy solution for the MinALT problem and coverage(OPT )
be the number of vertices which can be excluded in the optimal solution of the same problem,
then:

coverage(GREEDY ) ≥ [1− (1− 1

k
)k] · coverage(OPT ) > (1− 1

e
) · coverage(OPT ) (4.8)

Proof. The corollary follows directly from Theorem 9, since the equality of the problems
MaxCover and MinALT is shown in Theorem 8.

We also know that this is basically best we can do with the maximum coverage approach,
since an approximation threshold of e−1e (up to low-order terms) is shown for the maximum
coverage problem (Feige, 1998).

4.4 A new heuristic

The greedy algorithm presented in the previous section may perform well, but its com-
plexity as well as its memory requirements are high and therefore the algorithm will not
be applicable on real world data. Hence we will give another heuristic which has been
inspired by our understanding of the effects of landmarks on trees gained in Section 3.3.

As before, we will select one landmark at a time and therefore have k iterations to select
k landmarks.

For the first iteration, we temporarily add a random vertex to the set of landmarks which
will be deleted after the first iteration. In each iteration we first add a dummy vertex r to
V and edges (r, l) to E with length zero from this vertex r to the vertices l in the set L
of so far determined landmarks. We then build a search tree with the dummy vertex r as
root. In this search tree, we calculate a weight

weight(v) = dist(r, v) +
∑

w child of v

weight(v) (4.9)

which is recursively computed in Algorithm 4.6 beginning at the root vertex. Then the
algorithm descends from the root vertex r always to the child with the highest weight(·)
value until a leaf is reached. This leaf is selected and added to the set of landmarks as
shown in Algorithm 4.7. In the first iteration, the random vertex added to the set of
landmarks before the iteration gets deleted again. Note that this way the algorithm is
usually not selecting the node with the highest weight(·) value.

Unfortunately this heuristic could not be tested due to time limitations. In our opinion,
the following improvements are interesting:

First, one minor improvement should be to start with a leaf vertex instead of a completely
randomly determined vertex. An major improvement may be to introduce another set L̃
to store all vertices on a shortest path between two landmarks (including the landmarks
itself) and then connect the dummy root vertex r to all vertices in the set L̃ with edges of
zero length. This variant is inspired by the fact that in trees vertices on the path between
landmarks should not be added to the set of landmarks as it is stated in Section 3.3.5.
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Algorithm 4.5 weightedPaths(k)

Require: graph G = (V,E) and Integer k
1: x ← random vertex
2: L← {x}
3: for i = 1 . . . k do
4: V← V ∪ { root } {add an dummy vertex root}
5: for all l ∈ L do
6: E← E ∪ {(root,l)} {and edges with length 0 from root to all vertices in L}
7: len(root,l) ← 0
8: Dijkstra((V,E),root) {calculate dist(root,v) for all v ∈ V}
9: calculateWeights(root)

10: l ← maxWeightLeaf(root)
11: L← L ∪ {l}
12: if i = 1 then
13: L← {l} {delete random vertex x}
14: return Set L of k landmarks

Algorithm 4.6 calculateWeights(v)

Require: Vertex v
1: weight(v)← dist(root,v)
2: for all child w of v do
3: weight(v)← weight(v)+calculateWeights(w)
4: return weight(v)

Algorithm 4.7 maxWeightLeaf(v)

Require: Vertex v
1: max ← 0
2: maxVertex ← null
3: for all child w of v do
4: if weight(w) > max then
5: max ← weight(w)
6: maxVertex ← w
7: if maxVertex = null then
8: return v
9: return maxWeightLeaf(maxVertex)
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4.5 The brute force algorithm

The brute force algorithm to solve the landmark selection problem given in Algorithm
4.8 is similar to the greedy algorithm given in Algorithm 4.3, except for that we do not
calculate the resulting search space k · V times but

(|V|
k

)
times: Instead of computing

the next best landmark with smallest resulting search space for k iterations in the greedy
algorithm we compute the set L ⊂ V of k landmarks (of which

(|V|
k

)
different exist) with

the smallest resulting search space. As in the greedy algorithm we use Algorithm 4.1 to
compute all-pair-shortest-paths and Algorithm 4.2 to compute the search space for the
s-t-query using a set L of landmarks.

Algorithm 4.8 BruteForceLandmarks(k)

Require: Integer k
1: Floyd-Warshall()
2: Lmin ← ∅
3: min ← ∞
4: for all subsets L ⊂ V with |L| = k do
5: for all (s, t) ∈ V do
6: compute VL(s, t)(L, s, t)
7: sum ←

∑
s,t∈V VL(s, t)

8: if sum < min then
9: min ← sum

10: Lmin ← L
11: return Lmin of optimal landmarks

Since
(|V|
k

)
∈ θ(|V|k), the algorithm has a complexity of O(|V|3 + |V|k · k · (|V|2 · |V| · k+

|V|2)) = O(|V|k · k · |V|2 · |V| · k) = O(|V|k+3 · k2). Obviously, an algorithm with this
complexity is not able to handle large graphs, let alone real world road networks.
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5. Experiments

We were provided with an existing C++ code which implements the heuristics used so
far like random, avoid, advanced avoid and maxCover from the Algorithmics I group at
the Institute of Theoretical Informatics at the Karlsruhe Institute of Technology. Addi-
tionally we implemented the greedy algorithm 4.3 from Section 4.3 as well as a method to
calculate the resulting search space which has been used to measure the quality of a set
of landmark. This method basically calls algorithm 4.2 for each pair s,t ∈ V and hence
measures the quality way more precisely than the reduced costs method introduced by
Goldberg (Goldberg and Werneck, 2005) - though unfortunately it is only applicable for
small graphs due to its complexity. The integer linear program from Section 4.2 has been
implemented in Java using cplex (ILOG, 2009) as solver for the integer linear program.

The hardware environment for the experiments was a server with two Intel Xeon E5340
Quad-Core CPUs with 2.66Ghz per core and 6MB of cache per CPU. The server is equipped
with 32GB of memory. All implementations did only use one core while running, so that
several instances of the same or different programs ran simultaneously. Regarding the
software environment the server is running SUSE Linux 11.0 as operating system with
kernel 2.6.25.20-0.5-default. The java virtual machine is running at version 1.6.0 17 and
the implementation in C++ has been compiled using gcc version 4.3.3 with parameters
’-O4 -funroll-loops -DNDEBUG -DUNPACK’.

We were eager to try the methods on graphs as similar as possible to real world conditions.
Due to the complexity and hence the resulting runtime and memory requirements for
real world graphs, we had to limit ourself to small parts of these real world graphs. We
gratefully acknowledge the support of PTV AG, Karlsruhe for providing us with real world
road network graphs, though we were not able to use the whole graphs for the experiments.
Instead we extracted strongly connected components from these graphs to obtain graphs
of manageable sizes which are most likely connected.

In the following sections we will compare the heuristics used so far with the greedy algo-
rithm as well as the integer linear program. Therefore we will first give a brief overview
on how the different heuristics work:
random picks the amount of landmarks required as the set of landmarks randomly.
avoid first grows a shortest path tree Tr with random root r in which for each iteration
for each vertex v the weight as difference between dist(r, v) and the lower bound induced
by the set L of so far selected landmarks. Then, the size of each vertex v is computed as
the sum of weight of the vertices in the subtree of v if there is no landmark in the subtree.
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If a landmark is in the subtree of v, the size of v is 0. Finally the algorithm traverses the
tree starting at the vertex w with maximum size always to the child with the largest size
until a leaf is reached. This leaf is added to the set of landmarks.
advanced avoid is a variant of avoid which tries to compensate the main disadvantage of
avoid by exchanging the first landmarks selected by avoid by other landmarks later gen-
erated by avoid.
maxCover also tries to compensate the disadvantages of avoid by computing a set of land-
marks 4 times bigger than needed using avoid. Out of these landmark candidates maxCover
selects the landmarks then through several attempts using a local search routine.

5.1 Comparison with the Integer Linear Program

Despite the progress linear program solver like cplex made in the past years, we have
not been able to apply our integer linear program to graphs bigger than around 125 to
150 vertices when requiring the solver to finish within 6 hours. We may note that though
the linear program is quite memory consuming (for 150 vertices our linear program uses
about 10GB of main memory) this was not yet the limiting factor since even within the
time limit set to 6 hours there has been instances with at most 125 or 150 vertices which
cplex has not been able to solve optimally. For these instances no solution or if available
the best feasible solution is given.

Since it is obviously not possible to test the linear program on real world graphs, we limit
ourself to a comparison of how good the solution of the heuristics used so far and the
greedy implementation is compared to the optimal solution computed by cplex using the
integer linear program.

The search space in the following Table 5.1 has been computed without considering the
s-t-queries with dist(s, t) = ∞ at all, i.e. the search space of queries such that the target
t is not reachable from the source s is not taken into account.

In the comparison in Table 5.1 we can see, that the quality of the generated landmarks
improves with the time needed to compute them. Overall we can say that the quality of
the generated set of landmarks usually is in the following order

adv. avoid ≤ avoid ≤ maxCover ≤ greedy ≤ ILP

If we consider the time needed to generate the landmarks, we observe almost the reserve
order except for adv. avoid which is usually taking more time than avoid. On our graphs
we can not see an improvement from advanced avoid over avoid, for most graphs we tested,
advanced avoid has been worse than avoid.

We can also see that for most of our combination of graphs and generated landmarks the
greedy algorithm is as good as the optimal algorithm, though we suppose that for bigger
graphs the gap between them is getting clearer (as we can see a first gap at the lux-graph
with 100 vertices).

5.2 Comparing the Greedy Algorithm

Even though the greedy algorithm is less complex than the brute force algorithm as well
as is requires less memory than the integer linear program, once again we are not able
to run this algorithm on real-world road-network graphs. On our configuration, the im-
plementation of the greedy algorithm could at most be applied to compute around 12 to
16 landmarks on a graph with 1500 vertices without exceeding the time limitations of 90
hours.
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graphs deu lux

time search space time search space

50 vertices

avoid 0.0001 s 21,643 0.0001 s 26,897
adv. avoid 0.0002 s 21,785 0.0003 s 27,945
maxCover 0.0006 s 21,209 0.0005 s 26,396
greedy 0.07814 s 20,689 0.1036 s 26,309
ilp 33.420 s 20,689 34.548 s 26,309

100 vertices

avoid 0.0003 s 167,877 0.0003 s 179,275
adv. avoid 0.0007 s 174,042 0.0009 s 188,275
maxCover 0.001 s 156,353 0.00111 s 179,055
greedy 1.6513 s 156,043 1.6618 s 178,359
ilp 2h 4m 42s 156,043 10h 30m 47s 178,146

125 vertices

avoid 0.0005 s 278,486 0.0003 s 334,616
adv. avoid 0.0008 s 291,885 0.0011 s 350,209
maxCover 0.0013 s 263,089 0.0016 s 317,208
greedy 3.4267 s 262,647 3.6162 s 308,232
ilp 6h 1m 54s - (*) 6h 1m 54s - (*)

Table 5.1: Comparison of the heuristics used so far with the greedy algorithm and the
integer linear program solved with cplex on two different graphs. We generated for each
graph and each method 4 landmarks. The heuristics have been run three times and a
median of the runs has been taken. (*) indicates that no binary solution has been found
in time.

Since we are not able to run the greedy algorithm on real-world road-networks, we limited
ourself to compare to solution of the heuristics used so far to the one found by the greedy
algorithm and therefore get an idea of how good the heuristics are for bigger graphs than
those solvable by the integer linear program.

The results given in Table 5.2 indicates the same order as the comparison on slightly
smaller graphs. Once again the greedy algorithm clearly dominates the other methods
considering the resulting search space. Compared to the search space of the maxCover
heuristic greedy as about 96 to 90 percent of the search space with the results indicating
that the gap is getting bigger with larger graphs. Compared to the search space of the
avoid heuristic the gap is with 94 to 88 percent of the search space a little bigger.

On the other hand, it is also obvious that if considering the time needed to compute the
solution the greedy can not compare with the other methods even on small graphs. For the
small graphs under 100 vertices as compared in Table 5.1, the greedy algorithm is around
1000 times slower than the heuristics, and for bigger graphs around 500-1500 vertices it
even is around one million times slower than the heuristics. As the asymptotic complexity
implies, the difference gets worse the bigger the graphs get.

So considering that we can only improve the overall search space by around 4 to 12 percent,
the additionally needed amount of time is not paying off very well. In this setting, it would
be interesting to know how the heuristic proposed in Section 4.4 performs compared to
the so far leading heuristics like avoid, advanced avoid or maxCover.
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graphs deu lux

time search space time search space

500 vert. (370 vert.)

avoid 0.0064 s 8,798,842 0.0049 s 3,767,726
adv. avoid 0.0091 s 9,115,170 0.0099 s 3,747,703
maxCover 0.0333 s 8,532,156 0.0254 s 3,561,492
greedy 1h 4m 6s 8,264,125 16m 19s 3,386,954

1000 vert.

avoid 0.0126 s 60,047,064 0.0127 s 69,765,480
adv. avoid 0.0181 s 62,470,691 0.0182 s 69,831,648
maxCover 0.0667 s 59,082,280 0.0709 s 66,182,107
greedy 19h 40m 57s 56,708,679 15h 56m 34s 61,741,536

1500 vert.

avoid 0.0189 s 171,144,678 0.0193 s 200,782,618
adv. avoid 0.0267 s 173,950,651 0.0276 s 209,381,550
maxCover 0.1096 s 172,310,899 0.1022 s 191,656,773
greedy 3d 17h 16m 48s 156,467,985 3d 14h 1m 19s 174,687,874

2000 vert.

avoid 0.0252 s 679,638,147 0.0266 s 410,382,530
adv. avoid 0.0361 s 677,312,272 0.0375 s 437,572,399
maxCover 0.1368 s 652,973,350 0.1402 s 401,492,530
greedy - - - -

Table 5.2: Comparison of the heuristics used so far with the greedy algorithm on two
different graphs. During each run we generated 16 landmarks. The heuristics have been
run three times and the median of the runs has been taken.
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6. Conclusion

In this thesis we studied the preprocessing phase of the ALT algorithm. In particular, we
studied the effects landmarks have on the ALT search space to get a better understanding
and to improve the selection of landmarks. Though the effects of landmarks on the ALT
search space on a general graph are quite complex, we were able to derive several results
for the effects on easier graph classes like chains and trees.
Since we have been able to show that a new, less complex search space model for ALT
is appropriate we were able to reduce the problem of the selection of k landmarks to
the maximum coverage problem. We are also able to formulate the greedy algorithm for
the selection of k landmarks as a maximum coverage problem, for which we could apply
approximation as well as inapproximability results. The formulation of the problem as a
maximum coverage problem also results in an integer linear program we formulated and
implemented to solve the problem optimally for small graphs. We also gave an algorithm
for a new heuristic, which unfortunately could not be tested in this thesis but promises
good results at least on trees due to its construction.

Future work: ALT is not the preprocessing based algorithm which results in the fastest
query times. In fact there are actually several algorithms resulting in faster query times.
But in times where research is leading towards time-dependent routing, ALT, which has
the advantage that it is not necessary to repeat the preprocessing everytime the length of
an edge has changed (though the search space may not be as good as before), is remaining
interesting. Hence it would be interesting to see how the search space changes for routing
in time-dependent graphs as well as what can be done to select landmarks with an overall
(i.e. for each possible variant of the graph) good performance.
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